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1 Proposed Model

1.1 Setting & Assumptions

OPEC is comprised of 13 oil producing nations that coordinate their efforts to
manipulate global oil prices through increasing or decreasing production. The
group must constantly contend with changing market conditions and global de-
mand conditions to adjust production accordingly. Sometimes member nations
fail to meet their production quotas, while other times member nations inten-
tionally produce and export more oil due to localized economic and financial
pressure. While the interplay between member countries along with its intrinsic
game-like dynamics are an interesting area of research in and of itself, we focus
our attention on an idealized case. First we assume that OPEC nations are able
to coordinate and adjust their strategy instantaneously to respond to market
conditions. Second we assume that all member countries are able to meet their
production quotas or production cuts. Third we assume that if an OPEC na-
tion fails to meet their obligations other member countries will not explicitly
retaliate and will instead produce the remainder of the oil necessary to reach the
quota. Finally we assume that any oil produced will be immediately purchased
and consumed so long as their is demand for that oil.

1.2 Dynamics

Under these assumption we can define the rules of our game. First the dynamics
of the global price of oil at time Pt depend on global demand Dt along with the
total barrels of oil being produced qt ≥ 0.

dPt = Pt[η log
(Dt + ϵ

qt + ϵ

)
dt+ σP dW

P
t ] (1)

Where η represents the sensitivity of price to demand and production, The
log term produces negative drift when the production surpasses demand and
there is a surplus, and creates a positive drift when there is a shortage. ϵ is
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set to some small value to avoid numerical instability. We note that σPW
P
t is

a Brownian motion corresponding to any small scale fluctuations in price that
are caused by market pressures external to our system.

dDt = Dt− [(αD − βPt − λk)dt+ σDdW
D
t + (eY − 1)dNt] (2)

Next we analyze demand Dt dynamics in equation 2. First we claim that,
by standard microeconomic theory, Dt will shrink when Pt rises and grow when
Pt declines by some rate β. We also assume a base level of demand growth
αD, which encodes industrialization trends and population growth. We also
claim that demand is often hit by non-periodic shocks of various sizes. For
example the recession of 2008 and the Coronavirus pandemic both resulted
in over 70% decreases in demand. To that end we incorporate dNt into our
dynamics, which represents the number of shocks within time dt drawn from a
Poisson distribution with rate λ. Y ∼ N (µ, δ2) is the log-size of each jump. Note
that we use the demand immediately before t (i.e Dt−) since a jump at t would
result in a discontinuous process. We let σDdW

D
t be small scale fluctuations in

demand caused by market pressures external to our system. Finally we define
k = E[eY − 1] so we don’t double count shocks in both the drift and dNt term.

dXt = (µ− λk)dt+ σdWt + (eY − 1)dNt (3)

We note that dDt is almost identical to the Merton Jump Diffusion Model
where the state is modeled as equation 3[1]. Now that the relevant state dynam-
ics have been defined we can define the probability space that we are working in.
Namely (Ω,F, (Ft)

T
t=0,P), where Ft is right continuous filtration generated by

(WD
t ,W

P
t , Nt, Yi) and P is the joint distribution of all the Brownian, Normal,

and Poisson distributions. We now look towards the value function of the oil
producer.

V (D,P, t) = sup
q

ED,P

[∫ T

0

eρ(t−T )(min{qt, Dt}Pt − C(qt))

]
(4)

Next we define the value function V (D,P ) which seeks to maximize the dis-
counted expected profit, where ρ is the discount rate. Note that min{qt, Dt}Pt

is the revenue at time t assuming that if there is demand for oil it will be sold
immediately after being produced. We also introduce a cost of production func-
tion C(qt) to de-incentivize endless production. Specifically we let C(qt) be the
following where c1 is the baseline cost of production per barrel of oil while c2 is
the marginal penalty for scaling production beyond current operational capac-
ity. Note that we assume that any supply produced beyond what is demanded
is immediately discarded. This treats oil as perishable which we concede isn’t
realistic but simplifies our model. Finally we note that the terminal reward is
0, meaning that all profits must be accumulated during the the time horizon
[0, T ].

C(qt) = c1qt + c2q
2
t (5)
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Next we derive the associated Hamiltonian-Jacobi-Bellman Partial Integro-
Differential Equation (HJB PIDE) associated with the previously defined closed
loop control problem. To that end we first find dVt using the Ito formula for jump
processes [2]. In our case dV (Dt, Pt, t) is the following, where V

− = V (Dt−,Pt,t)

and dD̃t = Dt− [(αD − βPt − λk)dt+ σDdW
D
t is the continuous terms in dDt.

dVt =∂tV
−dt+ ∂DV

−dDt + ∂PV
−dPt

+
1

2
[∂2DDV

−(dD̃t)
2 + ∂2PPV

−(dPt)
2]

+ ∂2DPV
−dD̃tdPt

+ [V (Dt−e
Y , Pt, t)− V (Dt− , Pt, t)− (eY − 1)Dt−∂DV

−]dNt

(6)

We note that this formula for dV is fairly intuitive since it captures the
change in V with respect to each input (t,Dt, Pt), the change due to Brownian
shocks, along with the change due to jumps beyond first order effects. The last
term is functionally the residual of a first order Taylor expansion, Since the ∂D
term already captures first order effects of the jump process. This mirrors the
form of the pure diffusion Ito formula. Next we use the infinitesimal generator
dVt to derive the associated HJB PIDE by leveraging the dynamic programming
principle.

V (D,P, t) = sup
qt

EP
[ ∫ t+h

t

e−ρ(s−T )(min(qs, Ds)Ps − C(qs))ds+ e−ρhV (Dt+h, Pt+h, t+ h)
]

h→0−−−→ 0 = sup
qt

EP
[
e−ρ(t−T )(min(qt, Dt)Pt − C(qt))dt+ dVt

]
(7)

We expand equation 7 by taking the expectation EP[dVt]. Note that EP[dW
D/P
t ] =

0, EP[dNt] = λdt, (dWt)
2 ∼ dt, and recall that k = EP[eY − 1].

EP[∂tV
−dt] = ∂tV

−dt

EP[∂DV
−dDt] = E[∂DV −dD̃t] + E[∂DV −Dt−(e

Y − 1)dNt]

= ∂DV
−Dt−(αD − βPt − λk)dt+ ∂DV

−Dt−λE[eY − 1]dt

= ∂DV
−Dt−(αD − βPt)dt

EP[∂PV
−dPt] = ∂PV

−Ptη log
(Dt + ϵ

qt + ϵ

)
dt

EP
[
1

2
∂2DDV

−(dD̃t)
2

]
=

1

2
∂2DDV

−D2
t−σ

2
Ddt,

EP
[
1

2
∂2PPV

−(dPt)
2

]
=

1

2
∂2PPV

−P 2
t σ

2
P dt,

EP
[
∂2DPV

−dD̃tdPt

]
= ∂2DPV

−Dt−PtσDσP ρdt

EP[(. . . )dNt] = λ
(
EY

[
V (Dt−e

Y , Pt, t)
]
− V (Dt− , Pt, t)− ∂DV −Dt−k

)
dt.
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Putting this all together we get an exact form of EP[dVt]. Recall that Y ∼
N (µ, δ2) is the expected jump magnitude so k = EY [e

Y − 1] = eµ+
1
2 δ

2 − 1.

E[dVt] =

[
∂tV

− + ∂DV
−Dt−(αD − βPt) + ∂PV

−Ptη log
(Dt + ϵ

qt + ϵ

)
+

1

2
∂2DDV

−D2
t−σ

2
D +

1

2
∂2PPV

−P 2
t σ

2
P + ∂2DPV

−Dt−PtσDσP ρ

+ λ
(
EY

[
V (Dt−e

Y , Pt, t)
]
− V (Dt− , Pt, t)− ∂DV −Dt−k

) ]
dt

(8)

We can use equation 8 to rewrite the associated HJB PIDE of equation 7 as
the following. Note that we set the terminal reward to 0, however the terminal
condition can just as easily be some function ψ(DT , PT , T ) which penalizes
unmet demand, or any number penalization or reward schemes. Also note that
the HJB PIDE is deterministic, so we can drop the dependence on Dt− and
write EY in integral form where ϕ is the pdf of Y .

0 =∂tV + ∂DV Dt(αD − βPt)+

+
1

2
∂2DDV D

2
t σ

2
D +

1

2
∂2PPV P

2
t σ

2
P + ∂2DPV DtPtσDσP ρ

+ λ

(∫ ∞

−∞
V (Dte

y, Pt, t)ϕ(y)dy − V (Dt, Pt, t)− ∂DV Dtk

)
sup
qt

{
e−ρ(t−T )(min(qt, Dt)Pt − C(q)) + ∂PV Ptη log

(Dt + ϵ

qt + ϵ

)}
V (DT , PT , T ) = 0

(9)

2 Numerical Simulations

Now that we’ve formally derived the associated HJB PIDE we can apply numer-
ical simulation schemes to solve for the the optimal revenue V and production
strategy q within the time horizon [0, T ]. The model we introduced above has
quite a few parameters, so we first find appropriate parameters in literature.
Then we choose to implement the Monte Carlo schemes to solve the HJB PIDE
in equation 9. We also include the algorithm necessary to solve the problem
using the finite difference scheme.

2.1 Setting Parameters

Recall that our model has 10 parameters, {η, σP , αD, β, λ, σD, µ, δ, c1, c2}. We
will analyze each parameter and choose a reasonable value from literature.
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We first focus on the parameters contained in the price dynamics 13. We
first note that the supply qt ≥ 0 for all t. Next we have η which represents the
sensitivity of oil price to shortages and surpluses. In macro-economic literature
this parameter is referred to as the short-run elasticity of oil demand and is
often times estimated to be anywhere between 5% to 10% annually. In other
words a 1% imbalance in demand vs. supply can induce a 5% to 10% price
change [3]. To that end we set η = 1.075 Next we look at σP which represents
the volatility of oil prices. Empirically implied oil volatility is often between
0.25± .05 annually. [3].

Second we look at the parameters contained within the demand dynamics.
First we have αD which represents the baseline demand growth from populations
growth and industrialization. Empirical estimates indicate that oil consumption
grows about 1.3% to 1.7% annually [4]. Next is β, which represents the price
effect on demand. Qualitative analysis indicates that only for large fluctuations
in price is demand dampened. So we estimate a small β ≈ 0.01 [3]. Finally
we look at σD which represents the volatility in demand. Aside from discrete
jumps in demand the volatility is estimated to be about 1% annually [3].

The jump process has three parameters that we must set. First we set λ = .1
annually, which represents a major demand disruption every 10 years [4]. the
mean log jump size µ is set to −0.05 and the standard deviation δ = .1 which
would correspond to an average eY − 1 ≈ −5% plunge in demand. Additionally
these parameters are inline with recent demand shocks which almost always
skew negative. With the largest negative and positive shocks in recent history
being −9% in 2020 and 3.3% in 2010 [4].

The production cost function C(q) is quadratic with two parameters c1 and
c2. c1 represents the baseline production cost per barrel which is estimated to
be about $10 per barrel, which the marginal cost c2 is estimated to be about
$0.1 [5]. We summarize these parameters in the table bellow. We can treat ρ
as a measure of inflation since cash flow today will be worth more then cash
flow in the future. So to that end we set ρ = 2% which is the federal reserve’s
annual inflation target.

2.2 Monte Carlo Method

We first choose to solve the HJB PIDE for the optimal production strategy qt
using a simple Monte Carlo neural network approach. We let qt be a trainable
neural network πθ(Dt, Pt, t) with parameters θ. We can discretize the dynamics
using Euler-Maruyama with time steps ∆t:

Pt+∆t = Pt

(
1 + η log

( Di + ϵ

qn∗i,j + ϵ

)
∆t+ σP

√
∆tξP

)
,

Dt+∆t = Dt

(
1 + (αD − βPt − λk)∆t+ σD

√
∆tξD + (eY − 1)dNt

)
,

where ξP , ξD ∼ N (0, 1) are independent standard normals, Y ∼ N (µ, δ2),
and
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Parameter Description Annual Monthly
η Sensitivity of price to shortages/surpluses 1.075 1.075/12

σP Price volatility 0.25 0.25/
√
12

αD Baseline demand growth 0.015 0.015/12
β Demand sensitivity to price 0.001 0.001
λ Jump intensity (shock frequency) 0.1 0.1/12

σD Demand volatility 0.01 0.01/
√
12

µ Mean log jump size −0.05 −0.05
δ Std dev of log jump size 0.1 0.1
c1 Baseline production cost per barrel $10 $10
c2 Marginal cost of scaling production $0.1 $0.1
ρ Rate of Inflation 0.02 0.02/12

Table 1: Model Parameters: Descriptions and Conversions to Monthly Units

dNt =

{
1 w.p λ∆t

0 w.p 1− λ∆t
(10)

The agent’s objective is to maximize the expected total reward:

J (θ) = E

[
N−1∑
n=0

rtn∆t

]
(11)

rt = e−ρ(t−T )(min(qt, Dt)Pt − C(qt)) (12)

With that we can outline a general training strategy to recover the optimal
control q∗.

Algorithm 1 Monte Carlo Neural Network Training

1: Input: Number of paths per epoch M
2: Input: Number of training epochs T
3: Initialize: neural network policy πθ(D,P, t)
4: for t = 1, . . . , T do
5: for i = 1 to M do
6: Simulate trajectory {(Di

t, P
i
t )}Tt=0 with control qit = πθ(D

i
t, P

i
t , t)

7: Compute cumulative reward: Ri =
∑N−1

n=0 r
i
tn∆t

8: end for
9: Compute loss:

L(θ) = −J (θ) = − 1

M

M∑
i=1

Ri

10: Update θ by gradient descent on L(θ)
11: end for
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2.2.1 Results

We ran the Monte Carlo algorithm 1 for 100 epochs, with the parameters defined
in table 1. We find that the supplier exhibits myopic short term value maxi-
mization behavior. Specifically the optimal strategy found is to produce no oil
in the first couple of months of the simulation to create massive oil shortages.
That shortage will in turn cause a jump in the price of oil. The supplier then
exploits that jump in price by suddenly ramping up production to sell as much
high priced oil as possible. Also note that the production tracks demand closely
but is often times greater then demand. Under our model assumptions any oil
produced that is not immediately sold is discarded. So while slight overpro-
duction might seem un-intuitive it is simply the producers strategy of hedging
against the volatility in demand and ensuring that they do not miss out on any
potential profit.

Figure 1: Demand collapsing production strategy with T equal to 10 years and
dt equal to one month

This optimal production strategy is certainly valid, but is not realistic reflec-
tion of real world market dynamics since an oil producer would want to retain
demand overtime. Instead demand collapses within a few time-steps. We can
attribute this directly to the β and αD parameter. Since if βPt < αD then the
drift term of demand will consistently be negative. In other words the down-
ward pressure of high prices always dominates the current demand for oil in the
marketplace. Adjusting these parameter to αD = 0.6 and β = 0.001 yields a
similar but more sustainable oil producing strategy, where the producer period-
ically creates shortages in order to induce a jump in price which the producer
then exploits by increasing production. However as a result of the increase in
production, a surplus is created which crashes the price and decreases demand.
The producer then responds to the crash in demand by creating a shortage.
This cyclical pattern of behavior, while volatile, proves to be highly profitable
for the producer.
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Figure 2: Oscillatory production strategy

This optimal strategy is a reasonable strategy under our simplified modeling
framework. However its not reflective of real world market dynamics since
such volatile behavior could catalyze recessionary market conditions and would
inevitably persuade market participants to rely on less volatile energy solutions.
We note that such oscillatory behavior is a natural form of price control. What
we take issue with is the intensity of the swings in price. In order to dampen the
swings to create a more realistic we model we adjust η = 1.01, which increases
price elasticity and indicates that the price responds more conservatively to
shortages and surpluses.

Figure 3: Stable oscillatory production strategy

An obvious production strategy is just to produce as much oil as there is
demand. However by doing this drift term of price is effectively 0 which means
that P hovers around P0. So as demand increases the producer is unable to
turn a profit since the cost is quadratic in q, and the price remains constant
in expectation. In other words for all t > τ = inf{t : c1qt + c2q

2
t ≥ qP0} the

producer operates at a loss.
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Figure 4: Dt = qt production strategy

At this point it clear that when the model uses price dynamics 13 with drift
η log(Dt/qt) the price is highly sensitive to small shortages and surpluses. This
opens the door for producers to engage in extreme price control/manipulation in
order to guarantee long term revenue. The degree to which a producer induces
boom and bust cycles is theoretically unconstrained, but in reality the producer
will most likely limit the magnitude of their manipulation to maintain consumer
interest. To that end we introduce a variation to the model to limit the producers
access to the boom-bust strategy. Specifically we let

dPt = Pt[η tanh(Dt − qt)dt+ σP dW
P
t ] (13)

In this case when there is a market surplus qt > Dt there is a negative
drift and when there is a market shortage qt < Dt there is a positive drift in
price. However unlike the log based model the drift in this case is bounded
from [−η, η]. This alteration forces the producer to engage in more conserva-
tive strategies since their ability to manipulate the market price is significantly
diminished. Under this setting the optimal strategy is to slightly but consis-
tently underproduce. Specifically we find that across M = 104 simulations with
T = 200

1

T ·M

M∑
i=1

T∑
t=1

(Dt − qt) ≈ .4438 . . . (14)

This strategy is far more stable then the boom-bust strategy we observed earlier
while sacrificing little to no value on average. Additionally we observe that
under the tanh modeling choice price stabilizes and demand is gradually forced
upward, leading to a linear increase in revenue generated over time. An added
benefit of the price dynamics 29 is that the drift is Lipschitz which allows us
to use Piccard iteration to solve the problem, which we focus on in the next
section.
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Figure 5: Optimal strategy under E[dPt] ∝ tanh(Dt − qt)

2.3 Piccard Iteration Scheme

The main idea behind the finite difference scheme is to discretize the state
variable (Dt, Pt, t) then use approximations of the partial derivatives to retrieve
a solution. However in our case the Hamiltonian of the HJB PIDE involves a
supremum that depends on ∂PV

n
i,j , which itself depends on the unknown solution

V n . Traditional finite difference schemes assume known coefficients. In this
case however the coefficients of the discretized system depend nonlinearly on the
solution. As a result we can’t use the traditional finite difference scheme. To that
ends we choose to apply the Piccard iteration method, and begin by formalizing
a discretization scheme. We note that in practice ∆t = (∆D)2 = (∆P )2, and
that we will use the price dynamics described in equation 29 in order to preserve
Lipchitz continuity and guarantee convergence.

tn = n∆t, n = 0, 1, . . . , Nt ∆t =
T

Nt

Di = Dmin + i∆D, i = 0, 1, . . . , ND ∆D =
Dmax −Dmin

ND

Pj = Pmin + j∆P, j = 0, 1, . . . , NP ∆P =
Pmax − Pmin

NP

Next we approximate the derivatives using finite differences. We denote the
approximation of V (D,P, t) by V n

i,j ≈ V (Di, Pj , tn).
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∂tV ≈
V n+1
i,j − V n

i,j

∆t
(15)

∂DV ≈
V n
i+1,j − V n

i−1,j

2∆D
(16)

∂PV ≈
V n
i,j+1 − V n

i,j−1

2∆P
(17)

∂2DDV ≈
V n
i+1,j − 2V n

i,j + V n
i−1,j

(∆D)2
(18)

∂2PPV ≈
V n
i,j+1 − 2V n

i,j + V n
i,j−1

(∆P )2
(19)

∂2DPV ≈
V n
i+1,j+1 − V n

i−1,j+1 − V n
i+1,j−1 + V n

i−1,j−1

4∆D∆P
(20)

We approximate the jump term EY [V (Die
Y , Pj , tn)] using Guass-Hermite

quadrature since Y ∼ N (µ, δ2). Where (zk, wk)
M
k=1 are Gauss-Hermite Quadra-

ture points and weights of order M . Note that Die
Y may not perfectly line

up with a node on our D grid. So for any y we find a node Dm such that
Dm ≤ Die

y ≤ Dm+1 and interpolate.

∫ ∞

−∞
V (Dte

y, Pt, t)ϕ(y)dy ≈
M∑
k=1

ŵkṼ (Die
yk , Pj , tn) (21)

yk =
√
2δ + µ, ŵk =

wk√
π

(22)

Ṽ (Die
yk , Pj , tn) ≈

Dm+1 −Die
yk

Dm+1 −Dm
V n
m,j +

Die
yk −Dm

Dm+1 −Dm
V n
m+1,j (23)

s.t Dm ≤ Die
yk ≤ Dm+1 (24)

The last component necessary to fully discretize the HJB PIDE is to approx-
imate the policy qnij . To do this we must maximize the Hamiltonian which forces
the producer to balance immediate revenue gain with future negative price drift.

Ji,j,n(q) = e−ρ(tn−T ) [min(q,Di)Pj − C(q)] + η tanh(Dt − qt)Pj∂PV
n
i,j (25)

qn∗ij = arg sup
q≥0
{Ji,j,n(q)} , Hi,j,n = sup

q≥0
Ji,j,n(q) (26)

Now we can put these components together and fully discretize the HJB
PIDE and compactly describe the Piccard iteration method. Where V (k)(Di, Pj , tn) =

V
(k)
i,j,n at the kth iteration, and all partial derivatives are computed using the the

finite difference scheme described above.
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F
(k)
i,j,n = (∂DV )

(k)
i,j,n ·Di(αD − βPj) +

1

2
(∂2DDV )

(k)
i,j,n ·D

2
i σ

2
D

+
1

2
(∂2PPV )

(k)
i,j,n · P

2
j σ

2
P + (∂2DPV )

(k)
i,j,n ·DiPjσDσP ρ

+ λ

(
M∑
k=1

ŵkṼ
(k)(Die

yk , Pj , tn)− V (k)
i,j,n − kDi(∂DV )

(k)
i,j,n

)
+H(k)

i,j,n

(27)

Then we can solve for V at each (i, j, n) grid point by iteratively updating
V n
i,j as

0 =
V n+1
i,j − V (k)

i,j,n

∆t
+ F

(k)
i,j,n

V
(k+1)
i,j,n ← V n+1

i,j −∆t · F (k)
i,j,n

(28)

Algorithm 2 Picard Iteration for Solving HJB-PIDE via Finite Differences

1: Set maximum iterations K and tolerance δ
2: Set Nt, ND, NP and initialize grids {Di}ND

i=1, {Pj}NP
j=1

3: Set parameters η, σP , αD, β, λ, σD, µ, δ, c1, c2
4: Initialize V Nt

i,j = 0 ∀i, j (terminal condition)
5: for n = Nt − 1, Nt − 2, . . . , 0 do

6: Set initial guess V
(0)
i,j = V n+1

i,j

7: for k = 0, 1, . . . ,K do
8: for (i, j) ∈ {Di} × {Pj} do

9: Compute F
(k)
i,j,n using V

(k)
i,j,n

10: Update:

V
(k+1)
i,j,n = V n+1

i,j −∆t · F (k)
i,j,n

11: end for
12: if maxi,j

∣∣∣V (k+1)
i,j,n − V (k)

i,j,n

∣∣∣ < δ then

13: break
14: end if
15: end for
16: Set V n

i,j = V
(k+1)
i,j,n

17: end for
18: Output: V 0

i,j

We run this algorithm for T = 100 and plot the results for V (0, D0, P0)
for D0, P0 ∈ [20, 120] with the same parameter in table 1 except we let αD =
.6, β = .001, η = 1.01. We observe that the solution is similar to the optimal
production generated by the Monte Carl method with tanh price dynamics as
described in equation 29 and figure 5. Namely the optimal strategy is still to
slightly but consistently underproduce to drive up demand and stabilize prices.
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Figure 6: Optimal strategy q(0, Dt, Pt) and value V (0, Dt, Pt) under E[dPt] ∝
tanh(Dt − qt) using Piccard iteration

We can also plot a random path that uses the optimal strategy found by the
Piccard iteration 7. Recall that for the Monte Carlo we found that the producer
averaged a shortage of about .443, similarly in this case we observe that across
M = 104 simulations with T = 200

1

T ·M

M∑
i=1

T∑
t=1

(Dt − qt) ≈ .316 . . . (29)

Figure 7: Example of Optimal strategy under E[dPt] ∝ tanh(Dt − qt) using
Piccard iteration for random Dt, Pt Path

3 Conclusion

In this short paper, we developed a stochastic closed-loop control model for oil
production under demand uncertainty and market shocks. We modeled price
and demand dynamics as coupled stochastic differential equations, with both
Brownian volatility and Poisson-driven jumps to reflect real-world disruptions
in oil markets. We introduced a revenue focused value funciton and derived the
corresponding Hamilton-Jacobi-Bellman Partial Integro-Differential Equation
(HJB-PIDE).
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We explored two numerical approaches to solving the HJB-PIDE, including
a Monte Carlo neural network method and a Picard iteration finite difference
scheme. We found that the Monte Carlo method was naturally far more flexible
and could produce a wider variety of strategies since we don’t need to worry
about the dynamics being Lipchitz. However across these production strategies,
we observed consistent trends in optimal policy behavior. Specifically, producers
strategically underproduce to generate shortages, resulting in price hikes, which
increase future revenues. Under the log(D/q) price dynamics, this behavior led
to unstable but profitable boom-bust cycles. However, by replacing the log drift
with a bounded tanh(D− q) function, the model produces more realistic, stable
strategies that promote sustained demand growth and revenue.

Our results suggest that the producer can exploit the feedback loop be-
tween production and price to induce favorable market conditions. The degree
of control depends heavily on the elasticity parameter η and the form of and
parameters contained in the price drift.

Future work could extend the model by incorporating inventory constraints
and storage costs. Additionally, modeling competition between multiple produc-
ers and volatility induced consumer drop-out, could yield a richer framework.
Regardless, our current work provides a simple and tractable approach for an-
alyzing optimal commodity production strategies in volatile and discontinuous
markets.
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